Peter
Peter Campbell Smith

Bad luck and mathematica

Weekly challenge 227 — 24 July 2023

Week 227: 24 Jul 2023

Task 2

Task — Roman maths

Write a script to handle a 2-term arithmetic operation expressed in Roman numerals.

Examples


IV + V     => IX
M - I      => CMXCIX
X / II     => V
XI * VI    => LXVI
VII ** III => CCCXLIII
V - V      => nulla (they knew about zero but didn't have a symbol)
V / II     => non potest (they didn't do fractions)
MMM + M    => non potest (they only went up to 3999)
V - X      => non potest (they didn't do negative numbers)

Analysis

The Perly way to do this seems like having two functions, decode_roman() and encode_roman(). We can then parse the input into $first, $op, $second and the answer will be
encode_roman(
eval(decode_roman($first) . $op . decode_roman($second)))
.

And with a few tweaks to handle the special cases, that's what I did.

In both decode and encode the principle is to decompose the input into its roman constituents - ie 1000 (M), 900 (CM), 500 (D) ... and so on, steadily building up the result.

For decode, we need to start with the 2-character roman components - IV, IX and so on - and then the single character ones. For encode we can simply go greatest to least - 1000, 900, 500 ...

(Disclosure: I submitted this challenge - before I tried solving it).

Try it 

Example: CXCIX + XXVIII

Script


#!/usr/bin/perl

use v5.16;    # The Weekly Challenge - 2023-07-24
use utf8;     # Week 227 task 2 - Roman maths
use strict;   # Peter Campbell Smith
use warnings; # Blog: http://ccgi.campbellsmiths.force9.co.uk/challenge

roman_maths('IV + V');
roman_maths('M - I');
roman_maths('X / II');
roman_maths('XI * VI');
roman_maths('VII ** III');
roman_maths('V - V');
roman_maths('V / II');
roman_maths('V - X');
roman_maths('LXXX * L');
roman_maths('XLIII * XCIII');

sub roman_maths {
    
    my ($first, $op, $second, $result);
    say qq[\nInput:  $_[0]];
    
    # split input string into operands and operator
    if ($_[0] =~ m|^\s*([IVXLCDM]+)\s*(\S{1,2})\s*([IVXLCDM]+)\s*$|) {
        ($first, $op, $second) = ($1, $2, $3);
        
        # if the operator is valid, evaluate the operation
        if ($op =~ m!^-|\+|\*|/|\*\*$!) {
            $result = encode_roman(eval(decode_roman($first) .  $op  . decode_roman($second)));
            say qq[Output: $result];
        }
    }
    say qq[invalid input] unless defined $result;
}

sub decode_roman {
    
    # convert roman to arabic
    my (@bits, $roman, $arabic, $n);
    
    # roman fragments and equivalents
    @bits = ('IV', 4, 'IX', 9, 'XL', 40, 'XC', 90, 'CD', 400, 'CM', 900,
        'I', 1, 'V', 5, 'X', 10, 'L', 50, 'C', 100, 'D', 500, 'M', 1000);
    
    # successively delete bits from $roman and add them to $arabic
    $roman = $_[0];
    $arabic = 0;
    for ($n = 0; $n < @bits; $n += 2) {
        $arabic += $bits[$n + 1] * $roman =~ s|$bits[$n]||g;
    }
    return $arabic;
}

sub encode_roman {
    
    # convert arabic to roman
    my (@bits, $n, $arabic, $roman);
    
    # roman fragments and equivalents
    @bits = ('M', 1000, 'CM', 900, 'D', 500, 'CD', 400, 'C', 100, 'XC', 90,
        'L', 50, 'XL', 40, 'X', 10, 'IX', 9, 'V', 5, 'IV', 4, 'I', 1);
        
    # special cases
    $arabic = $_[0];
    return 'nulla' if $arabic == 0;
    return 'non potest' if ($arabic < 0 or $arabic > 3999 or $arabic != int($arabic));
    
    # successively subtract bits from $arabic and add them to $roman
    $roman = '';
    for ($n = 0; $n < @bits; $n += 2) {
        if ($arabic >= $bits[$n + 1]) {
            
            # may have to repeat some roman symbols - eg XXX
            while ($arabic >= $bits[$n + 1]) {
                $roman .= $bits[$n];
                $arabic -= $bits[$n + 1];
            }
        }                   
    }
    return $roman;
}

Output


Input:  IV + V
Output: IX

Input:  M - I
Output: CMXCIX

Input:  X / II
Output: V

Input:  XI * VI
Output: LXVI

Input:  VII ** III
Output: CCCXLIII

Input:  V - V
Output: nulla

Input:  V / II
Output: non potest

Input:  V - X
Output: non potest

Input:  LXXX * L
Output: non potest

Input:  XLIII * XCIII
Output: MMMCMXCIX

 

Any content of this website which has been created by Peter Campbell Smith is in the public domain